Nitrogen deficiency significantly hinders crop growth. Thus, noticing and solving the problem on time helps in preventing crop losses. It is also useful to know what causes nitrogen deficiency in plants and avoid that correspondingly.
Early problem detection facilitates a successful outcome. Plants with nitrogen deficiency are thin, pale, subject to chlorosis, and produce poor fruits. By knowing how to control nitrogen deficiency in plants with organic and chemical methods, farmers can save yields. Remote sensing assists agriculturalists in identifying the problem early.
Why Nitrogen Is So Important For Crops Development
N is critical for vegetation: it is necessary for chlorophyll formation, which is vital for photosynthesis – basically the way for plants to get food. Besides, N is needed for the very plant development: it is a “building block” for amino acids, DNA, membrane proteins, enzymes, most coenzymes, auxins, cytokinins, and merely cells.
This is why it is important to prevent and manage nitrogen deficiency, slowing growth and reducing yields. On the contrary, nitrogen fixation and correct N supply ensure proper growth and full crop production capacity. Another essential drawback of N starvation is low protein levels in grains, e.g., corn and wheat.

What Causes Nitrogen Deficiency In Plants And Affects N Content In Soils?
Certain circumstances may provoke N drops. Being aware of them helps farmers keep the situation under control. The most typical nitrogen deficiency causes are as follows:
- N lack relates to the soil type and is typical for sandy and well-drained soils with fast nutrient leaching.
- Excessive irrigation and heavy rains cause nitrogen deficiency due to overwatering.
- A lack of soil moisture tampers with the absorption of water-soluble nutrients by plant roots.
- Proper soil aeration provides enough O2 to aerobic and facultative aerobic N- fixing bacteria that supply organic N to plants and prevent N starvation. If air content in soils is low, denitrifying bacteria will use NO2 or NO3 instead. Besides, poor aeration causes the split of plant-useful nitrates to N2O, which is a greenhouse gas.
- Soil temperature affects nutrient dissolution and microbial activity to release plant-ingestible N. Thus, the cooler the soil, the less nutrition crops can get.
- High levels of Zn, Mn, K, chlorides are also among the causes of nitrogen deficiency in plants.
- Soil salinity negatively impacts nutrient absorption due to osmotic pressure and decreases N access.
- Soil acidity also affects N availability for crops: either high or low pH is unfavorable.
- Weed infestation provokes N starvation since weeds deprive crops of vital elements.
- Root health is critical for N uptake: when damaged by pests or illnesses, roots absorb nutrients poorly.
- High N solubility is also among the causes of nitrogen deficiency as N is easily washed away from the soil.
- Low organic matter means low plant-available N rates too since organic matter is a natural source of N to crops.
N starvation is ultimately critical after winter rains and snowmelt when new plants start growing and require N for their development.
Signs & Symptoms Of Nitrogen Deficiency In Plants
Nitrogen deficiency in a plant can be recognized visually by specific color or shape changes in leaves and stem, forced early flowering, signs of necrosis, etc.
How Quickly Will Plants Show Nitrogen Deficiency?
An N lack can be suspected pretty early since it can be visually noticed on leaves. The pale-green color and yellowing are among nitrogen deficiency symptoms in plants, alongside other nutrient deficiencies. Once noticed, the issue should be immediately addressed; otherwise, slight visual stages of nitrogen deficiency will inevitably get severe.

What Are The Symptoms Of Nitrogen Deficiency In Plants?
A lack of N means a lack of chlorophyll content in plants, and chlorophyll gives vegetation its vibrant green color. This is why nitrogen deficiency at early stages reveals in lighter greens. Then, a nitrogen deficiency causes green leaves to turn yellow, starting from older ones that fade prematurely. Further, the crop nutritional disorder leads to more serious symptoms like necrosis or wilt if not defeated timely.
Farmers can also notice the signs of nitrogen deficiency in early flowering. Stems acquire purple hues, and shoots establish slowly; vegetation is thin and weak.
The last stage of nitrogen deficiency in plants kills them and leads to a complete crop loss.
Yellowing (chlorosis) is not always an effect of nitrogen deficiency in plants since yellow leaves or plants are symptoms of other issues as well. A lack of K, Zn, S, Fe, or Mg or herbicide burns may also manifest yellowing. This is why, even though nitrogen deficiency usually causes plant leaves to turn yellow, the correct decision depends on the accurate problem cause identification.
Root Growth Under Nitrogen Deficiency
Insufficient N content also changes root development: roots grow faster than shoots. Intensive root growth is the so-called forage response to N starvationZhongtao Jia, Ricardo F.H. Giehl, Nicolaus von Wirén, The Root Foraging Response under Low Nitrogen Depends on DWARF1-Mediated Brassinosteroid Biosynthesis , Plant Physiology, Volume 183, Issue 3, July 2020, Pages 998–1010, https://doi.org/10.1104/pp.20.00440: plants explore more areas for the vital nutrient. On the contrary, under abundant N availability, plants reduce root growth to minimize toxicity.
How N Deficiency Develops
Effects of nitrogen deficiency in plants differ depending on the crop nutritional disorder development.
Early signs of nitrogen deficiency start with slight discoloration in maturer leaves: they are lighter than usual. The entire plant looks pale and thin due to insufficient branching. Then, slight nitrogen deficiency changes with more severe symptoms:
- Larger leaves turn from pale-green to yellow and white.
- Leaf stems and smaller leaves get reddish or purplish.
- Veins and petioles become reddish.
- Stems acquire vertical purplish stripes.
- Vegetation bursts into forced flowering.
- Chlorosis spreads from lower parts to the plant’s top.
- Leaves curl and shed.
- A nitrogen deficiency shows up as necrotic tissues in crops.
- Yield volumes considerably decrease.
- Plants fade prematurely and die.
Why does nitrogen deficiency kill plants? Apart from the inability to build cells and produce energy due to N starvation, crops become ultimately susceptible to water stress. In the attempt to find available N, roots spread around and develop big while shoots remain small and weak.
This happens because plants close their aqua pores in response to an N lack. Consequently, water and nutrient transportation to shoots is restricted.
Under severe nitrogen deficiency – without water, nutrition, cell-building materials, poor photosynthesis and no energy as a result – crops will eventually die.
Specific Examples Of Nitrogen Deficiency Symptoms In Crops
Despite some general signs of nitrogen deficiency in plants, different crops have different visual N starvation manifestations, suffering from different symptoms.
Nitrogen Deficiency In Corn
Since corn seedlings don’t need much N at the beginning, corn nitrogen deficiency symptoms are typically not detected in the early season. Later on, they become visible through pale green or yellowish leaves and thin stems.
The specific nitrogen deficiency symptoms in corn are:
- V-patterned yellowingAdotey, McClure, Raper and Florence. Visual Symptoms: A Handy Tool in Identifying Nutrient Deficiency in Corn, Cotton and Soybean. University of Tennessee Institute of Agriculture – starting at the leaf tips, spreading along the midrib to the leaf base, and eventually turning brown;
- small ears poorly filled or pinched at the top;
- glossy kernels (due to a lack of proteins and excessive fats);
- brownish stover (at the late season).

Nitrogen Deficiency In Rice
A lack of N impairs rice crop development, manifested in shorter, pale-green stems and short heads. Nitrogen deficiency in rice leaves is identified through:
- light-green and yellowish color in lower young leaves;
- yellowing of leaf tips in older leaves;
- poor canopy production and tillering.
Nitrogen Deficiency In Soybeans
Legumes are known as N-fixation plants that provide N to other crops, yet leguminous soybeans may also suffer from N starvation. An insufficient N content in soybeans results in light-green vegetation and light-yellow foliage with green prominent veins (interveinal chlorosis), which leads to necrosis at the last stage of nitrogen deficiency in plants. Soybean leaves turn pale yellow, with a progression to brown.
Nitrogen Deficiency Symptoms In Cotton
Poor N supply makes cotton foliage light-green, with premature drying and shedding of older leaves. The entire plant is weak, and its overall growth is stunted.
The specific symptoms of nitrogen deficiency in cotton crops include:
- impaired establishment of fruiting branches;
- poor boll formation and retention;
- square and boll abscissionCauses of Square and Boll Shedding in Cotton. Technical Bulletin Number 1672. United States Department of Agriculture. (shedding);
- small boll size;
- red leaf blades in severe cases.

Nitrogen Deficiency Symptoms In Wheat
N starvation impacts the entire wheat plant development visually manifested by yellowish or light-green foliage. Like in rice crops, nitrogen deficiency in wheat also reduces the number of tillers and stunts the overall growth.
Specific wheat nitrogen deficiency symptoms are as follows:
- discoloration starts in older leaf tips, changing from yellow to light-green that gradually turns white;
- stems may obtain light-pink hues.
However, pale hues don’t necessarily mean nitrogen deficiency in plant leaves – in wheat, it may be due to a lack of K or Mo deficiencies or waterloggingDiagnosing nitrogen deficiency in wheat. Department of Primary Industries and Regional Development's Agriculture and Food. agric.wa.gov.au. For this reason, it is important to mind not only disorder similarities but differences as well, alongside tissue testing and proper situation analysis.
Overwinter N starvation essentially decreases biomass and grain production in winter wheat. However, N supply at the stage of jointingZhai Bingnian, Li Shengxiu. Response to nitrogen deficiency and compensation on growth and yield of winter wheat Plant Nutrition and Fertitizer Science. 2005 ;11(3):308-313. under normal irrigation will amend the situation, boosting winter wheat growth and yields.
Nitrogen Deficiency Vs. Toxicity
Even though the effects are different, the results of both nutrition disorders are basically the same – impaired growth and reduced yields. Thus, either nitrogen deficiency or toxicity is harmful to crops. Both phenomena relate to N availability to plants. The difference between nitrogen deficiency and toxicity is that under deficiency, crops suffer from an N lack, and in the case of toxicity – from an N excess.
Plant part | Changes under N deficiency | Changes under N toxicity |
---|---|---|
Leaves | Changes under N deficiency– yellow or pale green – necrotic tissues – shedding | Changes under N toxicity– dark green – vigorous – shedding at the end |
Stems and petioles | Changes under N deficiency– purple or reddish – thin and short – weak | Changes under N toxicity– dark green or brownish – stiff – weak |
Root system | Changes under N deficiency– excessive deep root penetration with low biomass and density | Changes under N toxicity– underdeveloped roots that deteriorate after time |
Flowers and fruits | Changes under N deficiency– early maturing & flowering – reduced crop yield & its quality | Changes under N toxicity– vegetative bud formation instead of reproductive ones – inhibited or deformed fruits |
Correspondingly, agronomists should treat nitrogen deficiency and toxicity differently. It is necessary to add the nutrient to plants with an N lack, provided the soil pH rate is correct. With an N excess, it is possible to wash it away with weaker fertilizer solutions.

How To Fix Nitrogen Deficiency In Plants
When crops lack N, the nutrient can be supplied with organic or chemical methods. Prevention of nitrogen deficiency in crops tackles the issue beforehand.
Organic Methods Of Nitrogen Deficiency Treatment
Organic matter not only adds vital nutrients for plants but improves soil structure and helps retain soil moisture. Basic sources of N supply are widely used in organic farming and include:
- compost;
- animal manure;
- N-fixing plants (e.g., legumes);
- horn, bone, fish, or blood meal;
- nettle slag;
- groundnut husks;
- coco peat (coir pith);
- edible and non-edible oil cakes;
- green manure;
- tree leaves;
- ashes, etc.
There are many manures that can be a solution to nitrogen deficiency. N concentration in different manures variesKrishan Chandra. Organic manures. Regional Centre of Organic Farming. In particular, blood meal, groundnut husks and cake, coco peat are much richer in nitrogen compared to coal or wood ash and fresh poultry or green cowpea manure. Cover crops, crop rotation as well as intercropping help prevent nitrogen deficiency by growing legumes.
How long does it take to fix nitrogen deficiency in plants with organic methods? Organic manure needs time to decompose, so it is best to apply it after harvesting to have nourished soils before seeding. Besides, fresh manure should not be added after planting to avoid contamination or diseases and plant burning due to high N concentrations. The US Department of Agriculture recommendsPamela Coleman. Guide for Organic Crop Producers. National Center for Appropriate Technology (NCAT).:
- a 4-month window between fresh manure applications and harvesting or consuming ground-contacting edible crop parts;
- a 3-month window for crops with edible parts that don’t immediately contact the ground.
Chemical Methods To Fix Nitrogen Deficiency
Inorganic amendments suggest using synthesized N-containing fertilizers to promote crop recovery from nitrogen deficiency, e.g., NPK, nitrolime, ammonium nitrate, urea, etc. Soil testing before a cropping season will help understand the required corrections of pH and nutrient content.
Most chemical fertilizers have a balanced formula with an indicated NPK ratio. The first number stands for N content. The higher the nutrient needs, the higher is the required amount.
How long does it take to fix nitrogen deficiency with chemical fertilizers? Chemical fertilization acts fast, giving a quick N rise in the soil. However, it leaks fast too, due to high N solubility. Thus, the best solution for nitrogen deficiency here will be multiple split applications before and throughout the whole cropping season eliminated at the stage of maturing and the harvesting time.
Preventative Measures In Nitrogen Deficiency Management
Prevention helps to avoid the issue of N starvation. The following measures will spare farmers the trouble of fixing severe nitrogen deficiency by addressing the issue in advance:
- proper soil drainage;
- balanced use of fertilizers;
- organic matter applications;
- soil testing before seeding;
- plant tissue analysis for N starvation.

Apart from that, certain agricultural practices enrich the soil with nitrogen, and here is why:
- Regular sufficient (but not excessive) irrigation prevents both plant burns and N leakage.
- Fertilization and fertigation increase N concentration in soils. In particular, drip fertigation supplies nutrients directly to the plant’s root zone.
When fixing nitrogen deficiency, it’s important to maintain a proper balance. Each crop has specific needs. When a balance is shifted to any side, it always affects yields adversely. In particular, N saturation decreases sweet potato yields. The surprising phenomenon can be explained by the fact that N boosts the shoot growth while sweet potatoes are grown for roots.
Signs of a plant recovering from nitrogen deficiency appear fasterIdentifying nutritional deficiencies in backyard plants. Department of Primary Industries and Regional Development's Agriculture and Food. agric.wa.gov.au when soluble N is applied to foliage rather than roots. Nonetheless, the problem should still be resolved with fertilization or pH correction in the rhizome area because leaves can’t cover the nutrient deficiency of the entire plant. For this reason, foliage applications won’t solve the soil depletion issue and are justifiedLinda Chalker-Scott. The Myth of Foliar Feeding. Puyallup Research and Extension Center, Washington State University only when the conditions for root applications are unfavorable.
How To Deal With Nitrogen Deficiency With EOSDA Crop Monitoring
Inspecting fields for visual signs of nitrogen deficiency by far is not the only way. Remote sensing and satellite-based analytics help monitor the crop state to notice the problem on time.
Weather Monitoring
Weather conditions influence the nitrogen balance that crops need for healthy development. Either droughts or downpours adversely affect the nitrogen balance. EOSDA Crop Monitoring allows the farmers to be aware of weather anomalies by providing 14-day forecasts. With such data, the software facilitates the field activities planning to maintain the required level of nutrients for healthy crop growth, including but not limited to N. This will help eliminate nitrogen deficiency in plants.

Waterlogging Identification
Flooding or field waterlogging can occur not only due to heavy rains or relief specifics but also due to over-irrigation. The NDMI index shows the moisture content in crops, which helps estimate how wet the field is. With no recent rains but high NDMI values, there is a high probability of excessive irrigation events.

EOSDA Crop Monitoring also assists in carrying out all agricultural activities on each field or its separate zones. The Field activity log on the software is an excellent planner as well. Thus, if each activity is recorded in the system, the farmer will always know what has been done in the field and where exactly. It allows excluding the human factor of mistakenly repeated irrigation, fertigation, or any other agricultural activity, saving resources, and maintaining crop health.

Monitoring Crops Health At Active Stages Of Their Development
Despite yellowing and stunting, occurring due to various factors, N still directly impacts chlorophyll rates. This is why its reduced availability causes certain changes in crops. As crops highly need N at the active stages of plant growth, one can notice the signs through ReCl index values. This vegetation index is particularly useful in EOSDA Crop Monitoring during their active growth: low index values indicate deviations in vegetation development, possibly, because of nitrogen deficiency in plants.

Apart from the features above, EOSDA Crop Monitoring by EOSDA assists in tracking crop production from seeding to harvesting. Furthermore, the software allows agriculturalists to estimate the field productivity in general and in separate zones by analyzing performance in each cropping season. It facilitates efficient farm management in the long run.
Balance Is The Key
Nitrogen deficiency negatively affects crops, but too much nitrogen also reduces productivity. If nitrogen is low, crops suffer from chlorosis, starting in older foliage because plants reallocate N from mature to newer leaves. N starvation hinders the overall growth and decreases the establishment of fruits.
With excessive nitrogen, fruits ripen slowly, are too soft, and spoil faster. High nitrogen content is particularly undesirable for root crops since N forces shoots grow quicker than roots. Extra nitrogen makes crops ultimately sensitive to water or cold stresses and pathogen attacks.
This is why it is necessary to maintain the proper balance, to avoid both nitrogen deficiency and toxicity. EOSDA Crop Monitoring always stays alert to notice any development deviances on time, enabling farmers to address the problem early and avoid crop losses due to nitrogen deficiency issues.
Article tags:

Vasyl Cherlinka has over 30 years of experience in agronomy and pedology (soil science). He is a Doctor of Biosciences with a specialization in soil science.
Dr. Cherlinka attended the engineering college in Ukraine (1989-1993), went on to deepen his expertise in agrochemistry and agronomy in the Chernivtsi National University in the specialty, “Agrochemistry and soil science”.
In 2001, he successfully defended a thesis, “Substantiation of Agroecological Conformity of Models of Soil Fertility and its Factors to the Requirements of Field Cultures” and obtained the degree of Biosciences Candidate with a special emphasis on soil science from the NSC “Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsky”.
In 2019, Dr. Cherlinka successfully defended a thesis, “Digital Elevation Models in Soil Science: Theoretical and Methodological Foundations and Practical Use” and obtained the Sc.D. in Biosciences with a specialization in soil science.
Vasyl is married, has two children (son and daughter). He has a lifelong passion for sports (he’s a candidate for Master of Sports of Ukraine in powerlifting and has even taken part in Strongman competitions).
Since 2018, Dr. Cherlinka has been advising EOSDA on problems in soil science, agronomy, and agrochemistry.
Recent articles

Agricultural Technologies & Advanced Ways Of Farming
Agricultural technology helps boost farm productivity without negatively impacting the environment. Today, staying ahead of the game requires farmers to keep up with the latest technology trends.

Webinar: 2023 Trends In Precision Agriculture
On March 30, 2023, EOS Data Analytics and its partners FONCOSPA, Agribest México, and Synergy Agroinsumos will hold a joint webinar on the current trends of precision agriculture for businesses in Latin America.

Crop Classification And Field Boundaries In Kyrgyzstan
In a custom project, EOS Data Analytics trained a neural network model to perform crop classification of arable and non-arable land in Kyrgyzstan with active agriculture production.

How Remote Sensing Technologies Help In Viticulture
In this interview, Lidia Lelechenko, Account Executive at EOSDA, explains how remote sensing helps grape growers and winemakers take better care of their vineyards and reach sustainability in their practices.

Satellite Imaging For Microbiological Crop Solutions
Koppert, the input supplier of microbiological solutions for precision agriculture, communicates the benefits of sustainable development by using space imagery and analytics from EOSDA Crop Monitoring.

Using Satellite Solutions For Sowing: Webinar Takeaways
On February 28, 2023, EOS Data Analytics held an open webinar to discuss the current problems of Ukrainian farmers, pre-sowing tillage, and the benefits of using EOSDA solutions in these processes.